RESEARCH

What are you interested in?

All topics
Causal Inference
Neuroscience
NLP
Vision
Urban Planning and Smart Cities
Neuroscience and Psychology
AI and Education
Health-Biomedicine
Fundamentals of AI and DS
Environment
Economy and Finance
Digital Humanities
AI, Ethics & Law
AI in the Physical Sciences
AI for social good
General Falsification Tests for Instrumental Variables

Research

Feb 24th, 2022
General Falsification Tests for Instrumental Variables

Researchers: Dr. Oren Danieli (Economics), Dr. Daniel Nevo (Statistics & Operations Research), Dr. Dan Zeltzer (Economics)

  • Fundamentals of AI and DS
  • Economy and Finance
  • AI for social good

Instrumental variable (IV) estimation is a widely used method that supports high stakes government policies and business decisions, when controlled experiments are not feasible or when a treatment is not successfully delivered to every unit in a randomized experiment.

 

In this research project, we will develop statistical methods for assessing the validity of such designs. IV designs rely on exclusion restriction assumptions that are not directly testable and that are therefore challenging to assess empirically. In this context, this project aims to formalize the logic of falsification tests, a set of tests that leverage contextual knowledge about the absence of causal links (for example, from future to past outcomes) to test the validity of candidate instruments.

 

We will establish that IV falsification tests can be mapped to a class of prediction problems that can leverage current machine learning methods. Based on this conceptualization, we will develop general methods that would both improve falsification test efficiency and help guide the construction of such tests.

 

These methods will be particularly applicable to research using large datasets with many candidate variables that can be used for falsification, an increasingly common situation for which no formal methods currently exist. Developing methods for evaluating and improving the validity of these common research designs entails clear societal benefits.

 

 

 

Research

Aug 11th, 2021
The phylogenetic tree reconstruction game: developing reinforcement-learning

Researchers: Tal Pupko (Life Sciences), Yishay Mansour (Computer Science), Itay Mayrose (Life Sciences) 

  • Health-Biomedicine
  • Fundamentals of AI and DS
Tel Aviv University makes every effort to respect copyright. If you own copyright to the content contained
here and / or the use of such content is in your opinion infringing, Contact us as soon as possible >>